Potential Field and Force Constants of Some Trigonal Bipyramidal Pentahalides[†]

By P. C. Haarhoff

Department of Physics, University of Potchefstroom, Potchefstroom, Transvaal, South Africa

and C. W. F. T. PISTORIUS *

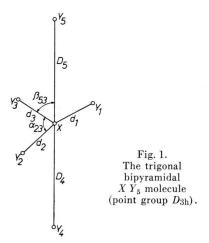
Institute of Geophysics, University of California, Los Angeles 24, California, USA

(Z. Naturforschg. 14 a, 972—974 [1959]; eingegangen am 22. August 1959)

The valence-type force constants of PF_5 , PCl_5 , SbF_5 , $SbCl_5$, $NbCl_5$ and $TaCl_5$ are evaluated by means of Wilson's F-G matrix method, using existing infrared and Raman data. Anharmonicity is not taken into account.

Until two years ago, little progress had been made in interpreting the vibrational spectra of trigonal bipyramidal XY_5 molecules. However, Gaunt and Ainscough ^{1, 2} recently measured and interpreted the infrared and Raman spectra of NbCl₅ and SbF₅. They succeeded in making a complete assignment of the fundamental frequencies of both these molecules. It is now also possible to interpret the older Raman data for other pentahalides possessing this structure by analogy with Gaunt and Ainscough's assignments.

The trigonal bipyramidal X Y_5 structure gives rise to two nondegenerate type $A_1^{'}$ vibrations (ν_1, ν_2) , two nondegenerate type $A_2^{''}$ vibrations (ν_3, ν_4) , three doubly degenerate type E' vibrations (ν_5, ν_6, ν_7) and one doubly degenerate type E'' vibration (ν_8) . ν_1 , ν_2 , ν_3 and ν_5 are stretching vibrations. All the other vibrations are angle deformations. The A_1' type vibrations are polarized in Raman scattering.


1. Coordinates

The normal coordinate treatment which follows is given in a somewhat cursory fashion, since much of the information can be found elsewhere ³.

Since there are twelve vibrational degrees of freedom, at least twelve internal coordinates are needed to describe the motion. We choose Δd_1 , Δd_2 , Δd_3 , ΔD_4 , ΔD_5 , $\mathrm{d}\Delta\alpha_{12}$, $\mathrm{d}\Delta\alpha_{23}$, $\mathrm{d}\Delta\alpha_{31}$, $\mathrm{d}\Delta\beta_{51}$, $\mathrm{d}\Delta\beta_{52}$, $\mathrm{d}\Delta\beta_{53}$, $\mathrm{d}\Delta\beta_{41}$, $\mathrm{d}\Delta\beta_{42}$ and $\mathrm{d}\Delta\beta_{43}$ (see Fig. 1). Δd_i is the change in length of an equatorial bond, ΔD_i is the change in length of an axial bond, $\Delta\alpha_{ij}$ is the change in the equatorial angle $Y_i X Y_j$, and $\Delta\beta_{ij}$ is

† Publication No. 161 of the Institute of Geophysics.

the change in the "axial" angle $Y_i X Y_j$. The angles are multiplied by the bond length in order to maintain the same dimensions for the various force constants. It is assumed that the length d of an equatorial bond is the same as the length D of an axial bond. Strictly speaking, this assumption is unwar-

ranted, but in practice this difference in length is seldom observable.

A suitable set of symmetry coordinates is the following:

Redundant coordinates:

$$egin{aligned} R_{
m a} &= d \, (arDelta lpha_{12} + arDelta lpha_{23} + arDelta lpha_{31}) / \sqrt{3} \equiv 0 \; , \ R_{
m b} &= d \, (arDelta eta_{41} + arDelta eta_{42} + arDelta eta_{43} + arDelta eta_{51} + arDelta eta_{52} \ &+ arDelta eta_{53}) / \sqrt{6} \equiv 0 \; , \end{aligned}$$

For the type A_1' vibrations,

J. Gaunt and J. B. Ainscough, Spectrochim. Acta 10,52 [1957].

J. Gaunt and J. B. Ainscough, Spectrochim. Acta 10,57 [1957].

³ J. S. ZIOMEK and C. B. MAST, J. Chem. Phys. 21, 862 [1953].

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

^{*} On leave from the National Physical Research Laboratory, South African Council for Scientific and Industrial Research, P.O. Box 395, Pretoria, Union of South Africa.

$$\begin{split} R_1 &= (\varDelta d_1 + \varDelta d_2 + \varDelta d_3)/\sqrt{3} \;, \\ R_2 &= (\varDelta D_4 + \varDelta D_5)/\sqrt{2} \;. \end{split}$$

For the type $A_2^{"}$ vibrations,

$$\begin{split} R_3 &= (\varDelta D_4 - \varDelta D_5)/\sqrt{2} \;, \\ R_4 &= d \, (\varDelta \beta_{41} + \varDelta \beta_{42} + \varDelta \beta_{43} - \varDelta \beta_{51} - \varDelta \beta_{52} \\ &\quad - \varDelta \beta_{53})/\sqrt{6} \;. \end{split}$$

For the type E' vibrations.

$$\begin{split} R_{5\mathrm{a}} &= (2\,\varDelta d_1 - \varDelta d_2 - \varDelta d_3)/\sqrt{6}\;, \\ R_{5\mathrm{b}} &= (\varDelta d_2 - \varDelta d_3)/\sqrt{2}\;, \\ R_{6\mathrm{a}} &= d\,(2\,\varDelta\beta_{41} - \varDelta\beta_{42} - \varDelta\beta_{43} + 2\,\varDelta\beta_{51} - \varDelta\beta_{52} \\ &\quad - \varDelta\beta_{53})/\sqrt{12}\;, \\ R_{6\mathrm{b}} &= \frac{1}{2}\,d\,(\varDelta\beta_{42} - \varDelta\beta_{43} + \varDelta\beta_{52} - \varDelta\beta_{53})\;, \\ R_{7\mathrm{a}} &= d\,(2\,\varDelta\alpha_{23} - \varDelta\alpha_{12} - \varDelta\alpha_{31})/\sqrt{6}\;, \\ R_{7\mathrm{b}} &= d\,(\varDelta\alpha_{12} - \varDelta\alpha_{31})/\sqrt{2}\;. \end{split}$$

For the type E'' vibration,

$$\begin{split} R_{\rm 8a} = & \, d \, (2 \, \varDelta \beta_{41} - \varDelta \beta_{42} - \varDelta \beta_{43} - 2 \, \varDelta \beta_{51} + \varDelta \beta_{52} \\ & + \varDelta \beta_{53}) / \sqrt{12} \, , \\ R_{\rm 8b} = & \, \frac{1}{2} \, d \, (\varDelta \beta_{42} - \varDelta \beta_{43} - \varDelta \beta_{52} + \varDelta \beta_{53}) \, . \end{split}$$

These symmetry coordinates are all normalized, mutually orthogonal, identically oriented, and transform according to the character table of the symmetry point group D_{3h} .

2. Potential Energy

The force constants used are f_{β} (representing the force associated with axial angle bending); $f_{\beta\beta}$ (interaction between axial bendings on the same side of the equatorial plane); $f_{\beta\beta}$ (interaction between axial bendings on opposite sides of the plane when they have a bond in common) and $f_{\beta\beta}$ (interaction between axial bendings on opposite sides of the plane when they do not have an equatorial bond in common). The definitions of the other force constants which are used are fairly obvious, and will not be given here.

The **F**-matrix elements are: For the type A_1' vibrations,

$$F_{11} = f_d + 2 f_{dd},$$
 $F_{12} = F_{21} = \sqrt{6} f_{dD},$ $F_{99} = f_D + f_{DD}.$

For the type $A_2^{"}$ vibrations,

$$\begin{split} F_{33} &= f_D - f_{DD} \,, \\ F_{34} &= F_{43} = \sqrt{12} \, \left(f_{D\beta} - f_{D\beta} \right) \,, \\ F_{44} &= f_{\beta} + 2 \, f_{\beta\beta} - f_{\beta\beta}' - 2 \, f_{\beta\beta}'' \,. \end{split}$$

For the type E' vibrations,

$$\begin{split} F_{55} &= f_d - f_{dd} \;, \\ F_{56} &= F_{65} = 2 \left(f_{\text{d}\beta} - f_{\text{d}\beta}' \right) \;, \\ F_{57} &= 7_{75} = f_{\text{d}\alpha} - f_{\text{d}\alpha}' \;, \\ F_{66} &= f_\beta - f_{\beta\beta} + f_{\beta\beta}' - f_{\beta\beta}' \;, \\ F_{67} &= F_{76} = -2 \left(f_{\alpha\beta} - f_{\alpha\beta}' \right) \;, \\ F_{77} &= f_\alpha - f_{\alpha\alpha} \;. \end{split}$$

For the type E'' vibration,

$$F_{88} = f_{\beta} - f_{\beta\beta} - f_{\beta\beta}' + f_{\beta\beta}''$$
.

3. Kinetic Energy

The **G**-matrix elements are as follows: For the type A_1' vibrations,

$$G_{11} = \mu_y \,, \quad G_{12} = G_{21} = 0 \,, \quad G_{22} = \mu_y \,.$$

For the type $A_2^{"}$ vibrations,

$$G_{33} = 2 \; \mu_x \,, \quad G_{34} = G_{43} = 0 \;, \quad G_{44} = 2 \; \mu_y + 8 \; \mu_x \,.$$

For the type E' vibrations,

$$\begin{split} G_{55} &= \mu_y + 3 \ \mu_x / 2 \ , & G_{56} &= G_{65} = - \ 3 \ \mu_x / \sqrt{2} \ , \\ G_{57} &= G_{75} &= 3 \sqrt{3} \ \mu_x / 2 \ , & G_{66} &= 3 \ \mu_y + 6 \ \mu_x \ , \\ G_{67} &= G_{76} &= - \ 3 \sqrt{3} \ \mu_x / \sqrt{2} \ , & G_{77} &= \ 3 \ \mu_y + 9 \ \mu_x / 2 \ . \end{split}$$

For the type $E^{\prime\prime}$ vibration, $G_{88} = {7\over 2} \mu_y$.

 μ_x and μ_y are the reciprocal masses of the X and Y atoms, respectively.

The secular equations for the various irreducible representations can now be constructed by applying the usual principles ⁴.

4. Vibrational Assignments and Force Constants

Gaunt and Ainscough ^{1, 2} observed the infrared and Raman spectra of SbF_5 and NbCl_5 . They also assigned the fundamental frequencies for these two molecules, and their results are given in Table 1. In their Raman spectra they observed, among others, peaks at 228 and 95 cm⁻¹ for SbF_5 , and 153 and 106 cm⁻¹ for NbCl_5 . They assigned these peaks as follows:

$$\begin{array}{lll} {\rm SbF_5\colon} & \nu_7(E') = 95~{\rm cm^{-1}}, & \nu_8(E'') = 228~{\rm cm^{-1}}; \\ {\rm NbCl_5\colon} & \nu_7(E') = 153~{\rm cm^{-1}}, & \nu_8(E'') = 106~{\rm cm^{-1}}. \end{array}$$

The above assignment for ${\rm SbF_5}$ leads to values of F_{44} , F_{66} and F_{88} which are of the same order of

⁴ E. B. Wilson, Jr., J. Chem. Phys. 7, 1041 [1939]; 9, 76 [1941].

magnitude, as would be expected. However, their assignment for NbCl₅ fails to accomplish this, and it appeared to be necessary to assign the NbCl₅ peaks in the following way:

NbCl₅: $\nu_7(E^{'}) = 106~{\rm cm}^{-1}$, $\nu_8(E^{''}) = 153~{\rm cm}^{-1}$. There is no particular reason why the earlier assignment should necessarily be correct.

The infrared spectrum of gaseous PF₅ has been investigated by Pennsler and Planer ⁵ and by Gutowsky and Liehr ⁶. They found only four fundamentals, the fifth infrared-active fundamental presumably occurring in the low-frequency region. The present assignment, shown in Table 1, was made on the basis of the band envelopes.

The Raman spectra of PCl_5 , $SbCl_5$, $TaCl_5$ and $NbCl_5$ were observed by Moureu and his associates $^{7-9}$. They did not assign the observed peaks. The present assignments were made on the basis of the polarization of the Raman lines, and by analogy to Gaunt and Ainscough's assignments $^{1,\,2}$ for SbF_5 and $NbCl_5$. The results are listed in Table 1.

The force constants were evaluated in the usual way. In the cases of $NbCl_5$ and PCl_5 imaginary results were obtained for F_{55} and F_{66} if F_{56} is neglect-

Molecule	PF_5	PCl_5	SbF_{5}	SbCl_5	NbCl_5	TaCl_5
$\nu_1(A_1')$	_	409	667	356	412	460
$v_2(A_1')$	_	356	264 (?)	309	355	370
$v_3(A_2^{\prime\prime})$	948	_	294	_	315	_
$v_4(A_2^{\prime\prime\prime})$	575.5	_	212	_	260	
$v_5(E')$	1027.5	495	713	_	497	490
$\nu_6(E')$	534	449	491	400	396	410
$\nu_7(E')$	_	100	95	72	106	90
$\nu_8(E^{\prime\prime})$	_	190	228	177	153	170

Table 1. Fundamental Frequencies in cm⁻¹.

ed. Since no isotopic data were available, the minimum values of F_{56} were found which yielded real values for F_{55} and F_{66} . F_{77} for SbCl₅ was calculated by splitting off ν_5 and ν_6 (which were not known) by means of Wilson's approximation ⁴.

Molecule	PF_5	PCl_5	SbF_5	SbCl_5	NbCl_5	TaCl
F_{11}	_	3.493	4 978	2.646	3.543	4.419
F_{22}^{11}	-	2.646	0.780	1.994	2.631	2.858
F_{33}	8.198	_	3.099	_	2.715	_
F_{44}^{33}	0.537	_	0.155	_	0.279	_
F_{55}^{44}	5.773	2.100	4.511	_	2.726	3.293
F_{56}^{55}	_	0.429	_	_	0.089	_
F_{66}^{56}	0.587	0.578	0.716		0.811	1.022
F_{77}^{00}	_	0.046	0.028	0.031	0.060	0.048
$F_{88}^{\prime\prime}$	_	0.215	0.166	0.173	0.140	0.167

Table 2. F-matrix elements in units of 105 dynes cm⁻¹.

Molecule	PCl_5	SbF_5	NbCl_5	TaCl_5
f _a	2.564	4.667	2.998	3.668
taa	0.464	0.156	0.272	0.375
$t_{\rm D}$ (or $t_{\rm D} + t_{\rm DD}$)	2.646	2.323	2.673	2.858
/DD	_	-0.776	-0.042	_
$f_{\alpha} - f_{\alpha\alpha}$	0.046	0.028	0.060	0.048
$f_{a\beta} - f'_{a\beta}$	0.214	_	0.044	_
$t_{\beta}-t_{\beta\beta}$	0.397	0.441	0.475	0.595
$f'\beta\beta - f''\beta\beta$	0.181	0.275	0.335	0.427
$f_{\beta\beta} - f''_{\beta\beta}$	_	-0.011	0.046	_

Table 3. Valence-type force constants in units of 10^5 dynes cm⁻¹.

The F-matrices are listed in Table 2, and the valence-type force constants deduced from these, in Table 3. The valence-type constants are not listed for PF_5 and SbCl_5 , since so few F-matrices have here been evaluated that a separate listing is hardly warranted.

The magnitude of f_{DD} for SbF₅ is notable. The present authors feel that ν_2 or ν_3 may have been incorrectly assigned in this case. Further study is needed in the far infrared region of the spectrum of SbF₅.

The authors would like to thank Professor P. H. STOKER of the University of Potchefstroom for his kind interest. One of us (P. C. H.) also wishes to thank the Vacuum Oil Company of South Africa for a most generous scholarship.

⁵ J. P. Pennsler and W. G. Planet, Jr., J. Chem. Phys. 24, 920 [1956].

⁶ H. S. Gutowsky and A. D. Liehr, J. Chem. Phys. 20, 1652 [1952].

⁷ H. Moureu, M. Magat and G. Wetroff, C. R. Acad. Sci., Paris **205**, 276 [1937].

⁸ H. Moureu, M. Magat and G. Wetroff, Proc. Indian Acad. Sci. 8, 356 [1938].

⁹ H. Moureu, M. Magat and P. Süe, Contributions à l'Étude de la structure Moléculaire, Victor Henri Comm. Vol., p. 125, Desoer, Liège, 1947-1948.